题目
For any 4-digit integer except the ones with all the digits being the same, if we sort the digits in non-increasing order first, and then in non-decreasing order, a new number can be obtained by taking the second number from the first one. Repeat in this manner we will soon end up at the number 6174 – the “black hole” of 4-digit numbers. This number is named Kaprekar Constant.
For example, start from 6767, we’ll get:
7766 - 6677 = 1089\ 9810 - 0189 = 9621\ 9621 - 1269 = 8352\ 8532 - 2358 = 6174\ 7641 - 1467 = 6174\ … …
Given any 4-digit number, you are supposed to illustrate the way it gets into the black hole.
Input Specification:
Each input file contains one test case which gives a positive integer N in the range (0, 10000).
Output Specification:
If all the 4 digits of N are the same, print in one line the equation “N
- N = 0000”. Else print each step of calculation in a line until 6174 comes out as the difference. All the numbers must be printed as 4-digit numbers.
Sample Input 1:
|
|
Sample Output 1:
|
|
Sample Input 2:
|
|
Sample Output 2:
|
|
分析
跟着题意做没有障碍。
遇到一个坑:
printf("%04d - %04d = %04d\n",a,b,a=a-b);
本意是想先输出a,b,a-b。再把a-b赋值给a。结果先执行了a=a-b,这样第一个输出的数字就是a-b了。
温习一下printf的用法
- %md 对不足m位的整数以m位进行右对齐输出,即前面补空格
- %0md 不足m位的时候前面补0
- %.mf 以精确到小数点后m位输出,四舍六入五成双的规则,若要四舍五入要用round。
代码
|
|